Genome Duplications and Accelerated Evolution of Hox Genes and Cluster Architecture in Teleost Fishes1

نویسندگان

  • EDWARD MÁLAGA-TRILLO
  • AXEL MEYER
چکیده

SYNOPSIS. The early origin of four vertebrate Hox gene clusters during the evolution of gnathostomes was likely caused by two consecutive duplications of the entire genome and the subsequent loss of individual genes. The presumed conserved and important roles of these genes in tetrapods during development led to the general assumption that Hox cluster architecture had remained unchanged since the last common ancestor of all jawed vertebrates. But recent data from teleost fishes reveals that this is not the case. Here, we present an analysis of the evolution of vertebrate Hox genes and clusters, with emphasis on the differences between the Hox A clusters of fish (actinopterygian) and tetrapod (sarcopterygian) lineages. In contrast to the general conservation of genomic architecture and gene sequence observed in sarcopterygians, the evolutionary history of actinopterygian Hox clusters likely includes an additional (third) genome duplication that initially increased the number of clusters from four to eight. We document, for the first time, higher rates of gene loss and gene sequence evolution in the Hox genes of fishes compared to those of land vertebrates. These two observations might suggest that two different molecular evolutionary strategies exist in the two major vertebrate lineages. Preliminary data from the African cichlid fish Oreochromis niloticus compared to those of the pufferfish and zebrafish reveal important differences in Hox cluster architecture among fishes and, together with genetic mapping data from Medaka, indicate that the third genome duplication was not zebrafish-specific, but probably occurred early in the history of fishes. Each descending fish lineage that has been characterized so far, distinctively modified its Hox cluster architecture through independent secondary losses. This variation is related to the large body plan differences observed among fishes, such as the loss of entire sets of appendages and ribs in some lineages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution and divergence of sodium channel genes in vertebrates.

Invertebrate species possess one or two Na+ channel genes, yet there are 10 in mammals. When did this explosive growth come about during vertebrate evolution? All mammalian Na+ channel genes reside on four chromosomes. It has been suggested that this came about by multiple duplications of an ancestral chromosome with a single Na+ channel gene followed by tandem duplications of Na+ channel genes...

متن کامل

Enigmatic Orthology Relationships between Hox Clusters of the African Butterfly Fish and Other Teleosts Following Ancient Whole-Genome Duplication

Numerous ancient whole-genome duplications (WGD) have occurred during eukaryote evolution. In vertebrates, duplicated developmental genes and their functional divergence have had important consequences for morphological evolution. Although two vertebrate WGD events (1R/2R) occurred over 525 Ma, we have focused on the more recent 3R or TGD (teleost genome duplication) event which occurred approx...

متن کامل

Hox Gene Clusters of Early Vertebrates: Do They Serve as Reliable Markers for Genome Evolution?

Hox genes, responsible for regional specification along the anteroposterior axis in embryogenesis, are found as clusters in most eumetazoan genomes sequenced to date. Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters, derived from the so-called tw...

متن کامل

15-P045 The hox gene complement of a basal teleost, Pantodon bucholzi (Osteoglossomorpha)

Gene and whole genome duplications have profoundly shaped the structure and function of the vertebrate genome. Teleost fish, which comprise approximately 50% of all known vertebrate species, have undergone a third round of whole genome duplication (3R) above and beyond the two rounds of whole genome duplication shared by all vertebrates (2R). Most non-teleost vertebrates including tetrapods hav...

متن کامل

15-P046 Elucidating the genetic basis of scale loss in fish

Gene and whole genome duplications have profoundly shaped the structure and function of the vertebrate genome. Teleost fish, which comprise approximately 50% of all known vertebrate species, have undergone a third round of whole genome duplication (3R) above and beyond the two rounds of whole genome duplication shared by all vertebrates (2R). Most non-teleost vertebrates including tetrapods hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001